

Specifications and characteristics of electrical fluids

Enrico Coltelli E.C.O. ITALIA® SRL

Copyright of Shell International B.V.

CONFIDENTIAL

March 2024

Electric mobility – fluid requirements

Fluids applied in electric mobility shall share following minimum requirements:

- Low electric conductivity
 - > To avoid short circuit occurring (presence of bare conductors)
- High breakdown voltage
 - > To avoid damages from incidental discharges
- Minimally electrostatic dissipative
 - > To avoid static sparking
- High thermal conductivity
 - > To support cooling of electric devices
- Low viscosity
 - Better pumpability and less energy loss in systems

Standard for EV charging and discharging infrastructure IEC 63110

Copyright of Shell International B.V.

CONFIDENTIAL March 2024

2

Electric fluids- physical properties

Parameter	Unit	Standard	Mineral oil	PAO	Grp. III	Ester
Heat capacity c _P [100°C]	J / kg * K	ASTM D7896	1860	2200	1900	2170
Thermal conductivity*	W / m * K	ASTM D7896	0.125	0.15	0.13	0.13
Breakdown voltage*	kV	IEC 60156	60	55	49	70
Electric conductivity*	pS/m	ASTM D 2624	10	30	50	> 200
Rel. Permittivity*	-	IEC 60247	2.2	2.1	2.0	3.0
Water content*	ppm	ASTM D6304	< 100	< 50	< 50	< 500

* Tested at RT; values to be seen as showcase for noted base fluids

- Ester show interesting thermal properties compared to mineral oil and synthetic HC
- Though ester tolerate higher amounts of water their electrical properties are excellent

Marchy 2024

Electric fluids- material compatibilities

Parameter	Unit	Standard	Mineral oil	PAO	Grp. III	Ester
Kinem. Viscosity[40°C]	J / kg * K	ASTM D445	7	5	12	8
Density*	g/cm ³	ASTM D7896	0.84	0.80	0.84	0.92
Flash point	°C	ISO 2592	130	155	198	180
Compatibility with						
Plastic compounds	-	ISO 1817	+	+	+	+
Elastomers	%	ISO 6072	+	+ / -	+ / -	+ / -

• Focusing on efficient heat transport, esters combine:

- Iow viscosity
- > low safety risk due to better (higher) flash point
- Material compatibility needs thorough evaluation as synthetic hydro-carbons tend to shrink & esters tend to swell

Thank you for your attention

Copyright of Shell International B.V.

January 2023

