«New methodology for thermal properties evaluation of energy-saving lubricating oils»

Evaluation of Lubricant Thermal Properties

Eleonora Colombo

s Classification: Restricted

Friction and lubrication role

Lubricant design

Lubricants can directly act on energy saving performances

LUBRICATE

- Prevent wear
- ✓ *Reduce friction*

CLEAN

✓ *Remove* **contaminants**

COOL

- ✓ Transfer heat
- ✓ Enhance durability
- Prevent corrosion

Thermal properties of lubricants

4 Eni Companies Classification: Restricted

Heat transfer phenomena

5

Heat transfer phenomena

$$Pe = \frac{Advection}{Conduction} = \frac{\rho c_p v_{mean}}{\lambda} \cdot \frac{{h_{film}}^2}{b}$$

 ρc_p =product between density and specific heat v_{mean} = mean velocity of lubricant h_{film} = lubricant film thickness λ = Thermal conducitivity b = Length of tribological coupling

 $Pe \rightarrow 0$

Estimate energy-saving potential of lubricating oils during lubricant design.

Analyse thermal properties of a wide range of base oils for lubricant design and of finite products

 α_T Thermal diffusivity = rate of heat transfer in time.

 λ Thermal conductivity = ability of a material to transfer heat through conduction.

 $\rho \cdot c_p$ Product of density and specific heat = ability of a material to store heat and transfer it through advection.

Thermal properties are evaluated for different feedstocks

Base oil type	KV a 40°C [cSt]
PAG water insoluble	45
PAG water soluble 1	50-54
PAG water soluble 2	73-84
Renewable base oil GPIII	58
Mineral base oil GPIII	49
Re-refined base oil GPI+	58
MIX mineral base oil GPI	55.2
esters	46
MIX estolides	58.7
MIX polialphaolefins	57.8
MIX nafthenic base oil	56.7

Effects related to viscosity are minimized.

Eni Companies Classification: Restricted

8

Instrumentation and principles of measurement

- The experimental apparatus Flucon LAMBDA:
 - Electronic device,
 - Measuring probe and sample cup,
 - Thermostat Omega,
 - Laptop,
 - FluconLAM PC Software.

Instrumentation and principles of measurement

Measuring principle:

Development of a new procedure

11

Thermal conductivity

Thermal conductivity decreases at increasing temperatures for all the analysed base oils.

Thermal diffusivity

 $9 \cdot 10^{-8} \frac{m^2}{s} > \alpha > 7 \cdot 10^{-8} \frac{m^2}{s}$

Thermal diffusivity decreases at increasing temperatures for all the analysed base oils:

The **thermal inertia** of lubricants grows when temperature grows.

Product of density and specific heat

14 Eni Companies Classification: Restricted

Comparison of thermal conductivities between base oils and finite products - PAG

The behaviour of finite lubricant is closely related to base oil behaviour

15 Eni Companies Classification: Restricted

Conclusions

The developed methodology enables:

The evaluation of all thermal properties of lubricating oil at variable temperatures in one single experiment

 Provide with additional data the in-house developed products with respect to other competition companies.

Thank you

- Contacts:
 - valerio.brocco@eni.com
 - manuela.toscanini@eni.com
 - <u>eleonora.colombo@eni.com</u>

References

- A History of Lubricants. K.J. Anderson.
- Influence of tribology on global energy consumption, costs and emissions. K. Holmberg, A. Erdemir.
- Principles of tribology. S. Wen e P. Huang.
- Flucon, «Thermal Conductivity Meter LAMBDA Hardware Manual».
- Flucon, «Thermal Conductivity Meter LAMBDA Software Manual».
- ASTM D7896 19: Standard Test Method for Thermal Conductivity, Thermal Diffusivity, and Volumetric Heat Capacity of Engine Coolants and Related Fluids by Transient Hot Wire Liquid Thermal Conductivity Method.
- Yaws' handbook of thermodynamic and physical properties of chemical compounds. C. L. Yaws.
- ISO 7902-1 2020, Hydrodynamic plain journal bearings under steady-state conditions -Circular cylindrical bearings.

Many thanks to...

- Manuela Toscanini,
- Valerio Brocco,
- Claudio Barzaghi.

- Giorgio Zoni,
- Giorgio Mustica,

