

Riunione plenaria della Commissione UNICHIM "Prodotti Petroliferi e Lubrificanti", Milano 20 Novembre 2019

Descrizione del progetto

3 Sviluppo

4 Applicazioni

5 Benefit

6 Impatto sul processo

Sfruttare il progresso tecnologico nelle tecnologie dei sensori, nel trattamento e nell'analisi dei dati per aumentare la competitività e la sostenibilità

Sviluppare soluzioni per il controllo di processo per garantire elevati standard di qualità e operazioni ottimali in termini di un uso più efficiente delle risorse

ANALIZZATORE MULTI-PROPRIETA':

Analisi rapida e accurata dei **grezzi** e dei **residui (RA e RV)** per qualsiasi grezzo e cariche di processo di raffineria:

ANALYZER

✓ Tecnologie analitiche di processo

√ Machine Learning (ML) algoritmi

Drivers

Necessità

- Efficienza di processo
- Ottimizzazione di impianto
- Incrementare i margini

Tendenza

- Prodotti ad alto valore
- Lavorazione di grezzi e semilavorati diversi
- Sostenibilità del processo

Disponibilità dei dati

- · Bassa frequenza analitica
- Variabilità materie prime
- Bassa diffusione analizzatori on-line

- Time consuming
- Costose
- Elaborate

La disponibilità di dati di processo accurati e frequenti è necessaria per operazioni industriali più affidabili e sostenibili

Challenge

Materie prime

Complessità della matrice:

- Elavato contenuto di informazione
- Diffcile da manipolare
- Elevata accuratezza richiesta

Grezzo:

- Analisi di processo e QC
- Crude Assay Semplificato

Sviluppare un analizzatore di processo alternativo e affidabile

Residuo:

- Analisi di processo
- No distillazione

Tecnologia

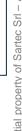
Algorithms

- Accuratezza / Precisione
- Manipolazione dei dati
- Automazione dei modelli

Sensors:

Utilizzare uno spettrometro NMR lowfield per le analisi di processo

Human Machine Interface (HMI)



- Automazione
- Semplicità
- Immediatezza

Sviluppare un analizzatore di processo alternativo e affidabile

| Confidential property c

POC 300 MHz Grezzi /Residui

300 MHz Residui POC 60 MHz Grezzi/ Residui

60 MHz Test in campo

- Sviluppo applicazione per grezzi
- Sviluppo di un metodo per l'analisi di residui

(EP20160188167)

- Prototipo dell'applicazione per grezzi
- Prototipo dell'applicazione per residui
- Sviluppo HMI (human machine interface)
- Sviluppo diagnostica
- Algoritmi avanzati

- Nessuna applicazione per residui
- Poco facile all'uso

Costoso

- User friendly
- Affidabile

• On Line Use

Sviluppo – 1H NMR 300MHz

POC 300 MHz Grezzi /Residui

Grezzi

Residui (RA, RV)

Distillazione

Rese

Composizione

CHNS

Aromatici,

MCRT

Asfalteni

TAN

• Metalli (V, Ni)

• Bulk

API

Pour Point

Viscosità

Dal Proof Of Concept (POC) al test in campo

dential property of Sartec Srl - All righ

Sviluppo - NMR 300MHz

POC 300 MHz Residui

Composizione

S

MCRT

Asfalteni

TAN

• Metalli (V, Ni)

• Bulk

API

Viscosità

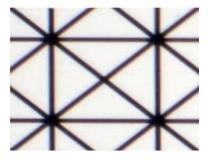
Dal Proof Of Concept (POC) al test in campo

| Confidential property of Sartec Srl - All rights reserved |

Sviluppo – 1H NMR 60MHz

POC 60 MHz Grezzi/ Residui

Grezzi



Residui (RA, RV)

300 MHz:

- Risoluzione
- Stabilità

60 MHz:

- Semplicità di utilizzo
- Velocità

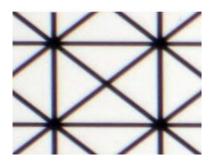
Dal Proof Of Concept (POC) al test in campo

infidential property of Sartec Srl - All r

Sviluppo – 1H NMR 60MHz

POC 60 MHz Grezzi/ Residui

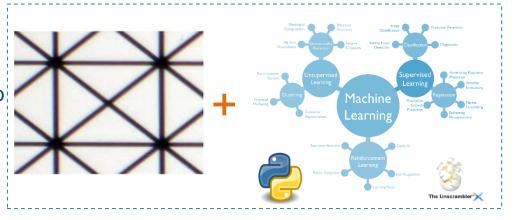
Grezzi



Residui (RA, RV)

300 MHz:

- Risoluzione
- Stabilità



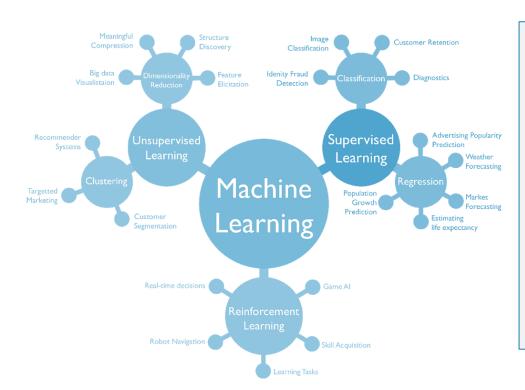
Dal Proof Of Concept (POC) al test in campo

60 MHz:

- Semplicità di utilizzo
- Velocità

idential property of Sartec Srl - All rights r

Sviluppo – machine learning


POC 60 MHz Grezzi/ Residui

Grezzi

Residui (RA, RV)

Elaborazione del Segnale

Correzione della Fase

Correzione della Linea di Base

Allineamento dei Picchi

Sviluppo dei modelli di calibrazione

Sviluppo - HMI

60 MHz Test in campo

L'interfaccia dell'applicazione è stata progettata e creata per essere:

PULITA

FUNZIONALE

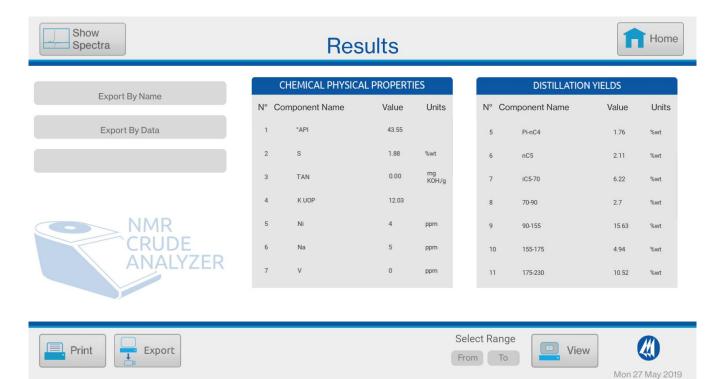
USER FRIENDLY

Dal Proof Of Concept (POC) al test in campo

Sviluppo - Risultati

60 MHz Test in campo

Database Grezzi


400+ grezzi

Origine

80 grezzi diversi

12.16.40

Dal Proof Of Concept (POC) al test in campo

Sviluppo - risultati

60 MHz Test in campo

N°	Component Name	Units	Application Range	% Success
1	Fuel Gas	%wt	0.000 - 0.02	100%
2	C3	%wt	0.01 - 0.45	100%
3	iC4	%wt	0.00 - 0.51	100%
4	nC4	%wt	0.00 - 1.70	100%
5	Pi-nC4	%wt	0.10 - 2.60	100%
6	nC5	%wt	0.00 - 2.10	100%
7	iC5-70	%wt	0.10 - 7.60	100%
8	70-90	%wt	0.20 - 3.00	100%
9	90-155	%wt	2.40 - 16.10	94%
10	155-175	%wt	1.30 - 4.70	100%
11	175-230	%wt	5.30 - 11.80	100%
12	230-250	%wt	2.40 - 4.70	100%
13	250-350	%wt	13.00 - 25.10	100%
14	350-370	%wt	2.70 - 4.70	100%
15	370+	%wt	26.90 - 65.70	100%
16	370-540	%wt	18.70 - 32.30	94%
17	540+	%wt	6.30 - 35.80	94%
18	370-560	%wt	20.30 - 36.40	100%
19	560+	%wt	3.30 - 32.20	94%

Valutazione delle prestazioni per confronto con Ripetibilità ASTM

Dal Proof Of Concept (POC) al test in campo

Applicazioni

Unità di distillazione grezzi (CDU) - operations

• e.g. Ottimizzazione delle rese, aumento delle capacità di distillazione

Grezzi e stoccaggio

 e.g. Controllo rapido del grezzo da navi, serbatoi o terminali di carico per rilevare variazioni di qualità

Blending grezzi

• e.g. Miglior conoscenza e blending dei grezzi

Pianificazione lavorazione

• e.g. Miglior tuning (Rese TBP in tempo reale Vs. rese stimate)

Non solo ottimizzazione di impianto

infidential property of Sartec Srl – All rights res

Benefit

Minor attività di laboratorio, Maggiori informazioni

Miglior conoscenza del processo

Miglior uso delle cariche

Possibilità di scale-up on-line

Tool accurato,
rapido ed
economico per
assicurare la
disponibilità dei
dati

Impatto sul processo

La gestione del greggio e le strategie della sua trasformazione sono alla base di una produzione sostenibile nella raffinazione:

Operatività (i.e. CDU)

- Aumento della capacità di distillazione/Rese
- Minor consumo di energia e maggior attenzione al prodotto evitando la ri-lavorazione

e Scheduling

- Miglior tuning (Resa TBP Reale Vs. Stimata)
- Migliorie continue tra pianificazione e operations

L'effetto aumenta quando questa tecnologia viene impiegata direttamente in impianto

Il futuro sta cambiando e le raffinerie devono insistere sullo sviluppo sostenibile (uso ottimale di attrezzature, materie prime ed energia)

Conclusioni

Next step:

Sviluppo dell'analizzatore on-line

I migliori benefici si avranno utilizzando l'analizzatore on-line per:

- Controllo di processo in tempo reale,
- Tool di supporto alle decisioni per ingegneri e operatori
- Operazioni di processo più sicure, affidabili e sostenibili.

Confidential property of Sartec Srl - All rights reserved

Informazioni di contatto

Silvia Palomba Environment & Oil

+39 070 2464169 silvia.palomba@sartec.it

Grazie

This presentation and any information contained herein are confidential and property of Sartec Srl.

They are intended solely for the use in this workshop.

Any use, copy, distribution or disclosure of them by individual or entity other than the intended recipient is prohibited.